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Abstract. We report the OPE-based predictions for a number of lepton energy and hadronic mass moments
in the inclusive semileptonic B → Xc �ν decays with a lower cut on the charged lepton energy. We rely
on the direct OPE approach where no expansion in the charm mass is employed and the theoretical
input is a limited set of underlying OPE parameters including mb and mc. A Wilsonian treatment with
a “hard” cutoff is applied using running low-scale masses mQ(µ) and a kinetic expectation value µ2

π(µ).
This leaves for perturbative corrections only genuinely short-distance effects and makes them numerically
small. Predictions are also given for the modified hadronic moments of the kinematic variable N 2

X which is
a combination of M2

X and EX . The measurement of such moments would allow a more reliable extraction
to be made of higher-order non-perturbative heavy quark parameters from experiment.

1 Introduction and motivation

The heavy quark expansion based on the local operator
product expansion (OPE) [1–3] allows one to accurately
calculate sufficiently inclusive decay probabilities, incor-
porating bound-state and hadronization effects in terms
of a limited number of physical heavy quark parameters
(for details, see the review [4]). Inclusive B decay distribu-
tions – in particular those related to b → c �ν transitions –
represent a portal to a precise determination of these pa-
rameters [5, 6], and lepton energy moments and moments
of hadronic mass and/or energy are among the most inter-
esting quantities. The main ingredients for their compu-
tations have been around for some time [2, 7–13]. Several
numerical applications can be found in the literature, for
moments with or without cuts on the charged lepton energy
(see [14–16] and references therein) often dictated by the
reality of experimental measurements. The present study
differs from and complements previous reports in a number
of aspects.

First, we make use of the robust approach advocated
in [17, 18]; in particular, we do not invoke an expansion
in 1/mc which has plagued the reliability of many earlier
applications of the heavy quark expansion. Moreover, in
our approach only the heavy quark parameters relevant to
inclusive decay rates are invoked. This reduces the num-
ber of new objects appearing at order 1/m3

Q from six to
two and eliminates poorly known non-local correlators. An
∗ On leave of absence from St. Petersburg Nuclear Physics
Institute, Gatchina, St. Petersburg 188300, Russia.

extended set of experimental moments allows us to con-
strain all relevant parameters provided model-independent
bounds [19] are incorporated.

We also rely on heavy quark parameters which are
renormalized à la Wilson and depend explicitly on a “hard”
normalization scale µ, which we set equal to 1 GeV. Pri-
marily, this refers to the heavy quark masses mb(µ) and
mc(µ) and to the kinetic expectation value µ2

π(µ). On the
theoretical side, this is necessary both to meaningfully as-
sign them definite values and to apply exact heavy quark
inequalities. On the practical side this renders perturbative
corrections well-behaved and moderate in size. The absence
of large higher-order corrections is crucial for a meaningful
extraction of the non-perturbative parameters.

The direct use of the underlying set of heavy quark
parameters reveals what a particular moment is actually
measuring or constraining, and simplifies considerably the
task of estimating the theoretical accuracy, often the sub-
ject of controversial claims [20]. It is worth recalling [6]
in this respect that the inclusive decays cannot depend
on non-local correlators often appearing in other applica-
tions of the heavy quark expansion, and there is no way to
constrain them directly studying only inclusive B decays.

The important motivation behind the present study is
to make available a code for evaluating the various distribu-
tions, which is not bound to specific technical assumptions,
for instance the use of meson mass relations, and is flexi-
ble enough to allow a meaningful investigation to be made
of the theoretical uncertainty using different options (see
Sect. 3). The detailed analytic expressions will be given
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in [21], while here we limit ourselves to presenting easy
numerical recipes and a discussion of the main points.

Finally, we present here predictions for the modified
higher hadronic moments with a charged lepton energy cut,
which can be measured in the experimental setup of the
B factories. They will allow one to pinpoint higher-order
non-perturbative expectation values with better accuracy
and reliability.

2 Theoretical setup

All inclusive semileptonic B decay distributions are de-
scribed by a few B decay structure functions wi(q0; q2),
where qµ is the four-momentum of the lepton pair; for
massless leptons one has [8]

d3Γ

dE� dq2 dq0

=
G2

F|Vcb|2
32π4 ϑ

(
q0 − E� − q2

4E�

)
ϑ(E�) ϑ

(
q2) (1)

× {
2q2w1 +

[
4E�(q0 − E�) − q2]w2 + 2q2(2E� − q0)w3

}
.

The OPE-based heavy quark expansion yields them in
terms of (short-distance) quark masses and of the B me-
son expectation values of local heavy quark operators. Ac-
counting for the latter through D = 6, the set of input pa-
rameters for our evaluation of the moments includes there-
fore mb, mc, µ2

π, µ2
G, ρ̃3

D and ρ3
LS . The hadronic mass mo-

ments kinematically depend also on the B meson mass MB

for which the experimental value 5.279 GeV is employed.
In practice, it appears in the combination Λ̄′ ≡ MB − mb.
As mentioned above, the input heavy quark parameters
depend on the normalization point µ for which we adopt
1 GeV. 1

The general structure of the OPE expressions for mo-
ments is described elsewhere [15, 21]. Here we give some
technical details of our calculations.

Charged lepton energy moments are computed as the
ratios

M
(n)
� (Ecut) =

∫
Ecut

En
�

dΓ
dE�

dE�∫
Ecut

dΓ
dE�

dE�

. (2)

Both numerator and denominator have been computed
through order 1/m3

b compared to the leading partonic re-
sult; perturbative corrections are included from terms αs
and β0α

2
s , and the ratio has been expanded in both pertur-

bative and non-perturbative corrections. Since perturba-
tive corrections in the Wilsonian scheme are suppressed,
an alternative procedure with separate numerical evalu-
ation of both numerator and denominator would yield a
close result. Perturbative effects are expressed in terms of
αMS

s (mb) for which we adopt 0.22 as central value.

1 Here we use, however, the “pole-type” Darwin expectation
value ρ̃3

D � ρ3
D(1 GeV) − 0.1 GeV3 instead of the Wilsonian

ρ3
D(1 GeV); cf. [18].

The hadronic invariant mass squared M2
X in the OPE

appears as a special choice in a one-parameter family of
kinematic variables:

M2(Lν) = (Lν + mbvν − qν)2

= L2 + (mbvν − qν)2 + 2Lν(mbvν − qν) ,

(mbvν − qν)2 ≡ m2
x, (mb − q0) ≡ ex, (3)

corresponding to Lν = Λ̄′vν , where vν = P B
ν

MB
= (1, 0) is

the B four-velocity, and m2
x and ex have the meaning of

invariant mass squared and energy in the hadron sector
at the quark decay level, ex = EX − Λ̄′. The OPE com-
putes m2

x and ex in much the same way as lepton energy
moments; therefore averages of M2

X and its powers are
generally polynomials in (MB − mb), with the coefficients
computed in the local OPE [22]. The latter are various
mixed moments 〈ek

x m2n
x 〉 derived from (1).

The variable M2 represents an observable for arbitrary
Lν . Being a combination of hadronic invariant mass and
hadronic energy (and most generally of spacelike momen-
tum), it can also be viewed as conventional “hadronic”
invariant mass square if one considers not the decay of an
isolated B meson, but rather of a compound of B com-
bined with a non-interacting “spurion” particle having mo-
mentum Lν − (PB

ν − mbvν). From the OPE perspective,
however, the inclusive probabilities appear as in the decay
of the b quark, while the momentum associated with the
light cloud looks like a spurion. The native object for the
OPE is therefore M2(Lν) with vanishing Lν , rather than
Lν = Λ̄′vν which yields M2

X .
It turns out that for higher hadronic moments the gen-

eralized moments with Lν � Λ̄′ are advantageous; they
are better controlled theoretically and more directly sen-
sitive to higher-dimension expectation values.2 To utilize
this advantage we consider, along with M2

X , the modified
moments, i.e. those of

N 2
X = M2

X − 2Λ̃EX + Λ̃2, (4)

with Λ̃ = 0.65 GeV, close to the anticipated value of Λ̄′. In
this case N 2

X − m2
c approximates the quark virtuality, for

which higher moments with respect to average are intrinsi-
cally related to higher-dimension expectation values. (The
last constant term in (4) does not affect such moments.) In
our approach computing these modified moments does not
require a new analysis – they are given by simply replacing
MB by MB − Λ̃.

The higher moments of the decay distributions – in
particular those of the hadronic invariant mass – are more
informative when considered with respect to the average,
say 〈(M2

X −〈M2
X〉)2〉, 〈(M2

X −〈M2
X〉)3〉, or similar moments

for N 2
X . These moments are the focus of our study. Since

2 This originates from the lower infrared sensitivity of the
modified moments compared to those of EX which, in higher
orders, are dominated by maximal-q2 kinematics where the
c quark is nearly at rest. The combinatorial factors for the
terms Λ̄′ex in the conventional M2

X moments work in the same
direction, being additionally enhanced by a large value of Λ̄′.
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this may complicate to some extent the experimental error
analysis,3 we also present similar numerical results for the
moments evaluated with respect to a fixed hadronic mass,
for which we take 4 GeV2 in the case of M2

X moments and
1.35 GeV2 for N 2

X ones.
Power corrections in moments with a lepton cut are

obtained directly integrating the published heavy quark
structure functions. The emerging analytic expressions are
not too complicated, but lengthy and consist of many
terms, especially for higher hadronic moments. We will
present them in a dedicated publication [21]. Perturbative
corrections are cumbersome and require numerical inte-
grations. At the same time, in our approach utilizing a
“hard” separation between short- and long-distance effects
they are numerically quite small. (For instance, it follows
from the tables in the appendix that including perturba-
tive corrections in 〈M2

X〉 has the same impact as decreas-
ing mb by 15 MeV, or as decreasing µ2

π by 0.02 GeV2 in
〈(M2

X − 〈M2
X〉)2〉.) Therefore we evaluate hadronic mo-

ments to first order in αs using the value αs = 0.3 (average
gluon virtuality in B decays is lower than mb). Moreover,
in the present paper we evaluated perturbative shifts in
the hadronic moments neglecting the cut on the lepton
energy. This seems to be a legitimate approximation since
at Ecut = 0 they are small and do not exceed the expected
accuracy, which is limited by other neglected effects. This
element will be improved in [21].

Unlike the case of lepton moments, for power-sup-
pressed terms we do not use the expanded form of the
ratios that form the moments, nor drop any power-like
terms generated by µ2

π, µ2
G, ρ3

D and ρ3
LS wherever they

appear. In particular, this implies that we would not in-
clude MB − mb (or its analogue MB − mb − Λ̃ for N 2

X
moments) into counting powers of ΛQCD. This is natu-
ral since that entry is external to the OPE for inclusive
probabilities and it can take arbitrary values, both much
larger and much smaller than ΛQCD, as illustrated by the
modified hadronic moments. Similarly, in the perturbative
corrections terms like ∼ αsµ

2
π, αsµ

2
G etc. are not retained,

but those ∼ αsΛ̄
k without non-perturbative expectation

values are legitimately kept for arbitrary power k.4
In this note we present our numerical results in a sim-

plified form, using the following reference values of the pa-
rameters:

mb = 4.6 GeV, mc = 1.2 GeV,

µ2
π = 0.4 GeV2, µ2

G = 0.35 GeV2,

ρ̃3
D = 0.1 GeV3, ρ3

LS = −0.15 GeV3, (5)

and providing the coefficients for the linear extrapolation
in these values from this base point. Such linearized extrap-
olations appear to be sufficiently accurate for reasonable
values of the parameters. The tables summarizing our re-
sults are given in the appendix. Yet this is no more than the

3 We thank O. Buchmueller for discussing this point and
alternative options.

4 Terms O(αsΛ̄
′k) with k > 0 have not been included in the

third hadronic moment.

simplest compact way of communicating our results (for
instance, we drew plots using the complete expressions
rather than interpolations). The numerical evaluations for
other central values, more accurate interpolating tables,
or compact Mathematica or FORTRAN programs evalu-
ating them are available upon request, and will be provided
with [21].

Measured in experiment are also non-integer moments
of M2

X , most notably 〈MX〉 and 〈M3
X〉 [23]. They do not

arise naturally in the 1/mb expansion, as illustrated by the
limit mc → 0 which is analogous to the decay B → Xs +γ;
fractional photon energy moments are not given there by
the expectation values of local heavy quark operators. For
B → Xc �ν, the OPE would involve an expansion in 1/mc,
as can also be seen from

〈Mν
X〉 =

(〈M2
X〉) ν

2

[
1 +

∞∑
k=2

C
k

ν
2

〈(M2
X − 〈M2

X〉)k〉
〈M2

X〉k

]
; (6)

for integer moments with ν = 2n the sum contains only
terms through k = n and stops before 〈M2

X〉 enters the de-
nominator.

Having computed the three first (integer) hadronic mo-
ments, we truncated the sum in (6) after k = 3. Although
incomplete, at the actual value of the charm mass this
truncated expansion appears to be a sufficiently good nu-
merical approximation for ν = 1 and ν = 3; the omitted
terms seem to be significantly below the actual theoretical
accuracy in evaluating the integer moments involved.

In fact, M2
X contains the dominant term 2Λ̄′ex as well

as the perturbative bremsstrahlung contribution, and both
effects can be computed explicitly for arbitrary ν without
truncating the series in (6). The numerical impact of this
resummation turns out to be totally negligible numerically.
Moreover, while the term 2Λ̄′ex dominates 〈M2

X〉, it is
subdominant in the higher moments with respect to 〈M2

X〉.
For illustration we give a few plots showing the depen-

dence of the hadronic mass moments on the lepton energy
cut, at the central values of the heavy quark parameters.
Figure 1 depicts 〈M2

X〉, Fig. 2 addresses 〈(M2
X − 〈M2

X〉)2〉
and 〈(N 2

X −〈N 2
X〉)2〉. Non-integer M2

X moments are shown
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Fig. 1. Average hadronic invariant mass squared 〈M2
X〉 at

different lepton energy cuts, for the heavy quark parameters
of (5)
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Fig. 2. Second invariant mass moment 〈[M2
X − 〈M2

X〉]2〉 (red
upper curve) and second modified hadronic moment 〈[N 2

X −
〈N 2

X〉]2〉 (blue lower curve), in the same setting
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Fig. 3. Different hadronic mass moments 〈Mν
X〉 1

ν for ν = 1
to 6 (from lowest to highest) versus lepton energy cuts; heavy
quark parameters as in (5)

in Fig. 3 where we actually plot the corresponding powers of
the moments having dimension of mass, for ν = 1, 2, 3, 4, 5
and 6. It shows that the full moments are by far dominated
by the average invariant mass, with relatively small differ-
ences.

As the semileptonic decay rate is well measured only
above a certain energy E�, the OPE predictions for the
decay fraction

R∗(Ecut) =

∫
Ecut

dΓ
dE�

dE�∫
0

dΓ
dE�

dE�

(7)

are helpful to reconstruct the overall b → c �ν rate. Since
the fraction of events cut out is small and they belong to
the domain of low E� which is theoretically most robust,
the predictions for R∗ are expected to be quite reliable.

3 Discussion

In the present paper we provide numerical expressions for
the local OPE predictions of the charged lepton energy and
hadronic mass moments with a lower cut on lepton energy.

Two major aspects of our analysis have already been em-
phasized. First, no 1/mc expansion is involved at any stage,
and the c quark mass can more or less be arbitrary, large
or small within the same formalism. The second aspect
is that we rely on well-defined running quark masses and
µ2

π normalized at the scale 1 GeV. (The scheme is often
referred to as “kinetic”, however this name is elucidating
only when applied to quark masses.) The advantages of this
approach are well known, and can be readily seen from the
applications presented here.

A quick comparison [24] with recent data [25–27] from
DELPHI, BaBar and CLEO suggests agreement between
this implementation of the OPE and experiment, with pre-
ferred values of the heavy quark parameters in the range
expected theoretically. (Our estimates show that the ex-
pectations for two moments of the photon energy spectrum
appear to fit the values reported by CLEO [28] once the
“exponential” effects discussed in [24] are adjusted.) The
dependence of the first and second hadronic mass squared
moments on the lepton energy cut seems to be in a qual-
itative agreement with the preliminary data reported by
BaBar and CLEO [26,27]. The dedicated data analysis in-
cluding possible fits to the predictions should, in our opin-
ion be left for experiment, and we did not attempt this.

Once the heavy quark parameters are extracted from
data, one can readily determine, for example, |Vcb| from
the measured semileptonic b → c decay width [18]:

|Vcb|
0.0417

=
(

Brsl(B)
0.105

) 1
2
(

1.55 ps
τB

) 1
2

× (1 − 4.8 [Br(B → Xu �ν) − 0.0018])

×[1 + 0.30 (αs(mb) − 0.22)]

× [1 − 0.66 (mb(1 GeV) − 4.6 GeV)

+ 0.39 (mc(1 GeV) − 1.15 GeV)

+ 0.013
(
µ2

π − 0.4 GeV2)
+ 0.09

(
ρ3
D(1 GeV) − 0.2 GeV3) (8)

+ 0.05
(
µ2

G − 0.35 GeV2)− 0.01
(
ρ3

LS + 0.15 GeV3)] .

It should be recalled, however, that ρ3
D(1 GeV) appearing

in the above equation is related to the ρ̃3
D employed in the

present study by ρ̃3
D � ρ3

D(1 GeV) − 0.1 GeV3.
We do not intend to address here the question of the

theory’s accuracy for the moments to an extent commen-
surate to the analysis [18] of the total Γsl(b → c). Nev-
ertheless, the numerical results presented in the appendix
allow a straightforward, if simplified, estimate to be made
of possible theoretical inaccuracies.

Since no perturbative corrections to the Wilson coeffi-
cients of non-perturbative operators have been computed
so far, one can assume a related ∼ 20% uncertainty in the
contributions due to µ2

π and µ2
G and a ∼ 30% uncertainty

in those due to ρ3
D and ρ3

LS . As perturbative corrections in
the hadronic moments are presently implemented only at
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first order in αs, the associated uncertainty can be assessed
by varying αs in a reasonable range; since the actual short-
distance corrections selected by our Wilsonian treatment
are moderate, we may conservatively vary the effective αs
between 0.2 and 0.45. To safeguard against possible acci-
dental cancellations in perturbative corrections, one may
assume an additional minimal uncertainty in mb,c of about
20 MeV. A similar “minimal uncertainty” in µ2

π is probably
around 0.02 GeV2.

The results we provide in the appendix can be improved
upon in several ways. The relevance of the improvements
is essentially determined by the state of the experiment. A
more complete calculation of perturbative corrections in
hadronic moments fully incorporating cuts in the lepton
energy is the first on the list. An all-order BLM resum-
mation can be implemented in both the lepton and the
hadron moments. There are ways to partially incorporate
non-BLM second-order corrections without performing ex-
tensive new calculations. All these improvements in the
perturbative corrections are not expected to essentially
modify the final result in the Wilsonian scheme (see, e.g.,
the dedicated analysis of Γsl in [18]). Yet having them in-
corporated would add confidence in the present estimates
and may allow one to reduce the theoretical uncertainty.

A probe of the significance of second- and higher-order
non-BLM corrections is already available by varying the
normalization scale µ used for the quark masses and µ2

π,
ρ3
D, while simultaneously running their values according

to [29]

dmQ(µ)
dµ

= −16
9

αs(M)
π

×
(

1 +
αs

π

[
β0

2

(
ln

M

2µ
+

5
3

)
− 3

(
π2

6
− 13

12

)])

− 4
3

αs(M)
π

µ

mQ

×
(

1 +
αs

π

[
β0

2

(
ln

M

2µ
+

5
3

)
− 3

(
π2

6
− 13

12

)])
,

dµ2
π(µ)
dµ

=
8
3

αs(M)
π

µ

×
(

1 +
αs

π

[
β0

2

(
ln

M

2µ
+

5
3

)
− 3

(
π2

6
− 13

12

)])
,

dρ3
D(µ)
dµ

= 4
αs(M)

π
µ2 (9)

×
(

1 +
αs

π

[
β0

2

(
ln

M

2µ
+

5
3

)
− 3

(
π2

6
− 13

12

)])
,

where M denotes the scale used for normalizing αs. In
fact, in the future we will also explicitly adopt the Wilso-
nian ρ3

D(µ) instead of the ρ̃3
D currently used. Even the

uncertainty obtained in this way may, however, not fully
represent the uncalculated non-BLM corrections. A further
option is using the MS scheme for the charm mass, m̄c(mc).
With this choice, one could vary µ in a wider range to probe
more quantitatively the actual hardness of a particular mo-

ment at a given E� cut, and a more direct comparison with
mc extracted from different physical processes [30] would
be possible. Since no constraints are imposed on mb − mc

through conventional mass relations like

mb − mc =
MB + 3MB∗

4
− MD + 3MD∗

4
(10)

+ µ2
π

(
1

2mc
− 1

2mb

)
+ O

(
1

m2
Q

)
+ . . .

the normalization point – or even the scheme itself – can
be different for mc and mb.

It should be emphasized that we have quoted in the
appendix what literally emerges from our OPE expres-
sions, regardless of whether the cut on E� is mild or severe.
However, if the cut is high, the effective hardness of the
inclusive process degrades and the accuracy deteriorates.
As has been argued [20, 24], the truncated expressions of
a practical OPE may not fully reflect this, while the so-
called “exponential” effects may become significant when
Ecut exceeds 1.3 to 1.5 GeV. The same reservation applies
to the above simplified way to estimate the theoretical ac-
curacy – it largely leaves out this aspect. The additional
cut-related theory errors are possibly insignificant below
1.35 GeV; they may not dominate even at Ecut = 1.5 GeV
– yet this cannot be confidently derived from theory a pri-
ori. The safest way to tackle them is to use an Ecut as low
as possible, not larger than 1.2 GeV.

A potential source of additional non-perturbative cor-
rections is the so-called “intrinsic charm”, or IC contribu-
tions in the OPE, associated with non-vanishing expecta-
tion values of the four-quark operators with charm fields
b̄Γ c c̄Γ b. No allowance is presently made for them. It has
been noted in [18] that their effect can mimic to some ex-
tent the contribution of the Darwin operator. We think
therefore that at the moment theoretical constraints on
ρ3
D should be used cautiously in the context of fits based

on the OPE without possible IC contributions.
There are some conclusions we draw from our anal-

ysis. The moments under consideration seem to reliably
(over)constrain a certain combination of the two heavy
quark masses, approximately mb − 0.6mc; the sensitivity
to the individual masses is not high and they are subject
to larger theoretical uncertainties.

The moments are only weakly sensitive to the spin–orbit
expectation value ρ3

LS , so it cannot be extracted from the
data. On the other hand, ρ3

LS is reasonably constrained
by a number of exact heavy quark sum rules which place
model-independent bounds. Once they are taken into ac-
count, the associated uncertainty in the moments appears
to be by far subdominant. Therefore, ρ3

LS does not have
to be included in the fit and we suggest to use a fixed
value ρ3

LS = −0.15 GeV3, and to vary it within ±0.1 GeV3

to conservatively estimate the related uncertainty. This as-
sumption would be further reinforced if the data fits prefer
values of the primary heavy quark parameters in the ex-
pected ranges [4, 17,31]

mb(1 GeV) = 4.60 ± 0.06 GeV,
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µ2
π(1 GeV) = 0.45 ± 0.1 GeV2,

0 < ρ̃3
D < 0.15 GeV3

or

0.1 GeV3 < ρ3
D(1 GeV) < 0.25 GeV3 ; (11)

an updated review of the different determinations of beauty
and charm quark masses can be found in [30]. Similarly,
since µ2

G is accurately known, it should be set to 0.35 GeV2

[32] and varied within ±20% to allow for the perturbative
uncertainty in its Wilson coefficient.

Obtaining informative model-independent constraints
on higher-dimension heavy quark parameters requires the
measurement of higher hadronic moments, at least the
second and desirably the third one. Since these higher mo-
ments – when considered with respect to the average –
depend strongly on the higher-dimension expectation val-
ues, even a rough measurement of the variance and of the
asymmetry parameter would yield precious information.
One should be warned, however, that the theoretical accu-
racy one can realistically achieve for the higher moments of
M2

X is limited, especially in the case of the third moment.
On the other hand, the modified higher hadronic moments
〈(N 2

X −〈N 2
X〉)2〉, 〈(N 2

X −〈N 2
X〉)3〉 are better in this respect

and more suitable to this purpose. We encourage experi-
ments to pay closer attention to such combinations of M2

X
and EX moments.

The actual assessment of the theoretical error in the
calculation of the moments is a very subtle issue. We cannot
do without mentioning a few important aspects.

First, there are strong correlations among the theoret-
ical uncertainties. After all, everything inclusive we com-
pute is expressed in terms of only three structure functions
which have physical properties like positivity, regardless of
any dynamics. Because of these correlations, one should
distinguish between the overall consistency of the fits to
the various moments in the context of our formalism, and
the concrete prediction for a certain moment. There are
common uncertainties, like a systematic bias in mb or µ2

G,
that would simply shift the fitted value of mb or µ2

G, but
would not degrade the quality of the global fit, nor would
they alter significantly the Ecut-dependence [20]. At the
same time, these uncertainties could still noticeably affect
the numerical value of a particular moment.

On the other hand, there are uncertainties that affect
each moment in a different way, for instance, unknown
perturbative corrections to the Wilson coefficients of the
non-perturbative operators, which are in principle differ-
ent for every moment, and also depend on Ecut. Therefore,
simply varying the values of the heavy quark parameters
uniformly in all observables may not represent realistically
the uncertainty of the theoretical expressions, and an in-
termediate procedure may be required.

Having mentioned these complications of the theoreti-
cal error analysis, we would like to make a few suggestions
based on our study. For a sufficiently low cut on E� a
reasonable starting point is to estimate the theoretical ac-
curacy in the moments just varying the values of the heavy
quark parameters they depend upon in the ranges we have

mentioned above; see (9). For higher moments, however,
this should be applied to the moments with respect to the
average; the ordinary moments (around zero) would in this
way exhibit strong theoretical error correlations. Clearly,
allowance should be made for an additional uncertainty
once the cut is raised beyond 1.35 GeV.

In summary, we have seen that consistency checks be-
tween theory and emerging data should rely on robust
theoretical elements, with additional assumptions reduced
to minimum. Once agreement with theory is confirmed,
and the domain and degree of applicability is verified ex-
perimentally (e.g., the safe interval for the lepton cut), one
can and should implement into the fit of the data all the
model-independent relations and bounds following from
heavy quark sum rules. These are exact relations derived
in QCD, and they are indispensable for a precision deter-
mination of the heavy quark parameters and for a stringent
test of our theoretical tools.
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A Appendix

The following tables give our numerical estimates for var-
ious moments. The general form for a generic moment M
in question will be

M(mb, mc, µ
2
π, µ2

G, ρ̃3
D, ρ3

LS ; αs)

= V + B (mb − 4.6 GeV) + C (mc − 1.2 GeV)

+ P (µ2
π − 0.4 GeV2) + D (ρ̃3

D − 0.1 GeV3)

+ G (µ2
G − 0.35 GeV2) + L (ρ3

LS + 0.15 GeV3)

+ S (αs − 0.22) ; (A.1)

V represents the reference values obtained for the heavy
quark parameters in (5). They have the dimension of the
moment M itself and the quoted number is in GeV to the
corresponding power. The values of all the coefficients B
to S are likewise in the proper power of GeV (the same
power for S, one power less for B and C, two powers less
for P and G, three powers less for D and L). The values
of Ecut are shown in GeV as well.

All the moments are given without cut on E� (i.e.
Ecut = 0) and for Ecut = 0.6 GeV, Ecut = 0.9 GeV,
Ecut = 1.2 GeV and Ecut = 1.5 GeV. The fraction of the ra-
tios R∗ are tabulated for Ecut = 0.3 GeV, Ecut = 0.6 GeV
and Ecut = 0.9 GeV.
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Table A.1. First moment of the lepton energy 〈E�〉
Ecut V B C P D G L S

0 1.372 0.389 −0.286 0.033 −0.085 −0.078 0.0043 −0.029
0.6 1.420 0.367 −0.268 0.036 −0.083 −0.076 0.0035 −0.032
0.9 1.500 0.339 −0.243 0.041 −0.081 −0.073 0.0021 −0.035
1.2 1.614 0.304 −0.211 0.051 −0.083 −0.068 −0.0005 −0.043
1.5 1.759 0.262 −0.173 0.073 −0.096 −0.063 −0.0058 −0.055

Table A.2. Second moment of the lepton energy with respect to average, 〈(E� − 〈E�〉)2〉
Ecut V B C P D G L S

0 0.1774 0.0951 −0.0584 0.044 −0.059 −0.029 −0.0048 −0.036
0.6 0.1391 0.0960 −0.0602 0.042 −0.058 −0.027 −0.0047 −0.033
0.9 0.0969 0.0868 −0.0547 0.040 −0.057 −0.024 −0.0048 −0.031
1.2 0.0570 0.0691 −0.0433 0.038 −0.055 −0.019 −0.0051 −0.029
1.5 0.0266 0.0473 −0.0293 0.035 −0.057 −0.012 −0.0056 −0.028

Table A.3. Third moment of the lepton energy with respect to average, 〈(E� − 〈E�〉)3〉
Ecut V B C P D G L 100 · S

0 −0.0334 −0.0307 0.0265 0.023 −0.034 0.0043 −0.0054 −1.6
0.6 −0.0121 −0.0204 0.0189 0.022 −0.034 0.0021 −0.0049 −1.7
0.9 −0.0015 −0.0082 0.0086 0.019 −0.033 0.0003 −0.0041 −1.5
1.2 0.0016 0.0001 0.0015 0.015 −0.030 −0.0005 −0.0031 −1.2
1.5 0.0009 0.0030 −0.0013 0.010 −0.025 −0.0003 −0.0020 −0.9

Table A.4. Fraction of the decay rate R∗ with E� exceeding a threshold value Ecut

Ecut V B C P D G L 100 · S

0.3 0.9934 0.006 −0.0044 −0.0001 −0.0008 −0.0008 0.0001 0.06
0.6 0.9508 0.040 −0.0317 −0.0008 −0.0060 −0.0060 0.0009 0.15
0.9 0.8476 0.120 −0.0947 −0.0018 −0.0176 −0.0189 0.0029 0.19

A.1 Lepton energy moments

In Tables A.1–A.4 we present the lepton energy moments.

A.2 Hadron invariant mass moments

Since the moments related to hadronic invariant mass
and hadronic energy are presently calculated using only
O(αs) perturbative corrections, we have employed αs =
0.3, which can equivalently be represented as

αs(mb)

1 − 0.846 9
2

αs(mb)
π

(A.1)

with the canonical value αs(mb) = 0.22. This allows us
to use the same form (A.1) with S showing the sensi-
tivity to perturbative corrections. In this way the inter-
val 0.2 < αs < 0.45 mentioned in Sect. 2 corresponds to
varying αs(mb) within 0.22+.07

−.06. Switching off perturbative
corrections, αs = 0, numerically amounts to subtracting
0.16 S from a moment.

As seen from the tables, the dependence on the precise
value of αs is moderate, and the corresponding uncertainty

Table A.5. First hadronic invariant mass moment 〈M2
X〉. S �

0.41

Ecut V B C P D G L

0 4.641 −4.99 3.18 −0.70 1.0 0.48 −0.13
0.6 4.619 −4.96 3.18 −0.73 1.0 0.50 −0.13
0.9 4.583 −4.90 3.19 −0.79 1.1 0.55 −0.12
1.2 4.528 −4.84 3.21 −0.93 1.3 0.64 −0.11
1.5 4.444 −4.74 3.22 −1.29 1.8 0.81 −0.06

Table A.6. Second invariant mass moment with respect to
average, 〈(M2

X − 〈M2
X〉)2〉. S � −0.51

Ecut V B C P D G L

0 1.290 0.396 −0.97 4.8 −5.9 −0.14 0.30
0.6 1.233 0.446 −0.98 4.7 −6.0 −0.13 0.24
0.9 1.137 0.523 −0.99 4.5 −6.4 −0.11 0.13
1.2 0.985 0.660 −1.00 4.2 −7.1 −0.06 −0.05
1.5 0.747 0.970 −1.04 3.8 −8.9 0.05 −0.34

is subdominant; this is an advantage of using the Wilso-
nian scheme.
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Table A.7. Third invariant mass moment with respect to
average, 〈(M2

X − 〈M2
X〉)3〉. S � 10.1

Ecut V B C P D G L

0 5.02 1.40 −2.50 5.6 21 −1.3 1.2
0.6 4.92 1.48 −2.49 5.5 21 −1.3 1.1
0.9 4.80 1.53 −2.45 5.5 19 −1.3 1.0
1.2 4.68 1.52 −2.32 5.7 17 −1.2 0.8
1.5 4.64 1.40 −1.98 6.3 15 −0.8 0.4

Table A.8. First modified hadronic moment 〈N 2
X〉. S � 0.38

Ecut V B C P D G L

0 1.580 −4.06 2.52 −0.62 0.74 0.34 −0.10
0.6 1.579 −4.03 2.53 −0.64 0.77 0.36 −0.10
0.9 1.574 −3.98 2.53 −0.69 0.83 0.40 −0.09
1.2 1.558 −3.90 2.52 −0.82 0.96 0.47 −0.08
1.5 1.501 −3.75 2.45 −1.15 1.30 0.57 −0.04

Table A.9. Second modified hadronic moment with respect
to average 〈(N 2

X − 〈N 2
X〉)2〉. S � −0.35

Ecut V B C P D G L

0 0.954 0.506 −0.606 3.6 −3.8 0.12 0.25
0.6 0.918 0.537 −0.616 3.5 −3.9 0.12 0.20
0.9 0.855 0.592 −0.624 3.4 −4.1 0.14 0.13
1.2 0.761 0.685 −0.628 3.2 −4.6 0.18 0.00
1.5 0.621 0.882 −0.659 3.0 −5.8 0.31 −0.17

Table A.10. Third modified hadronic moment with respect
to average 〈(N 2

X − 〈N 2
X〉)3〉. S � 9.9

Ecut V B C P D G L

0 3.27 1.47 −1.67 2.5 13.3 −0.87 0.32
0.6 3.22 1.53 −1.68 2.4 12.8 −0.88 0.29
0.9 3.15 1.57 −1.66 2.5 12.1 −0.89 0.25
1.2 3.10 1.57 −1.58 2.7 11.1 −0.88 0.17
1.5 3.16 1.43 −1.31 3.6 9.5 −0.69 −0.03

Table A.11. Hadronic invariant mass moment 〈MX〉. S � 0.12

Ecut V B C P D G L

0 2.145 −1.17 0.750 −0.22 0.33 0.11 −0.03
0.6 2.140 −1.17 0.752 −0.22 0.34 0.12 −0.03
0.9 2.133 −1.16 0.757 −0.24 0.37 0.13 −0.03
1.2 2.122 −1.15 0.765 −0.27 0.42 0.15 −0.02
1.5 2.105 −1.14 0.770 −0.35 0.56 0.19 −0.01

Tables A.11 and A.12 give predictions for non-integer
moments 〈MX〉 and 〈M3

X〉; they are evaluated using (6)
truncated after k = 3.

In Tables A.13–A.16 are the higher integer hadronic
moments (for mass squared and modified) with respect to
a fixed mass.

Table A.12. Hadronic invariant mass moment 〈M3
X〉. S � 1.1

Ecut V B C P D G L

0 10.19 −16.0 10.1 −1.4 2.1 1.5 −0.38
0.6 10.11 −15.8 10.1 −1.5 2.1 1.6 −0.38
0.9 9.98 −15.6 10.1 −1.8 2.3 1.7 −0.38
1.2 9.78 −15.2 10.1 −2.2 2.8 2.0 −0.37
1.5 9.47 −14.8 10.0 −3.4 3.9 2.6 −0.27

Table A.13. Second invariant mass moment with respect to
4 GeV2, 〈(M2

X − 4 GeV2)2〉 5

Ecut V B C P D G L

0 1.701 −5.76 3.20 3.9 −4.6 0.47 0.13
0.6 1.617 −5.45 3.06 3.8 −4.7 0.50 0.08
0.9 1.477 −4.95 2.83 3.6 −5.0 0.54 −0.02
1.2 1.264 −4.21 2.49 3.2 −5.7 0.62 −0.17
1.5 0.944 −3.02 1.92 2.7 −7.4 0.78 −0.40

Table A.14. Third invariant mass moment with respect to
4 GeV2, 〈(M2

X − 4 GeV2)3〉. S � 11

Ecut V B C P D G L

0 7.77 −22.9 12.0 11.2 15.0 0.85 1.09
0.6 7.45 −21.3 11.2 10.6 14.2 0.88 0.91
0.9 6.98 −18.9 10.0 9.7 12.8 0.96 0.63
1.2 6.39 −15.5 8.3 8.7 10.8 1.15 0.25
1.5 5.72 −10.6 5.8 7.6 7.5 1.62 −0.27

Table A.15. Second modified moment with respect to
1.35 GeV2, 〈(N 2

X − 1.35 GeV2)2〉. S � −0.19

Ecut V B C P D G L

0 1.007 −1.20 0.62 3.3 −3.4 0.28 0.21
0.6 0.970 −1.14 0.60 3.2 −3.5 0.29 0.16
0.9 0.905 −1.03 0.57 3.1 −3.7 0.32 0.08
1.2 0.805 −0.78 0.49 2.9 −4.2 0.38 −0.03
1.5 0.644 −0.11 0.14 2.7 −5.4 0.49 −0.19

Table A.16. Third modified moment with respect to
1.35 GeV2, 〈(N 2

X − 1.35 GeV2)3〉. S � 11

Ecut V B C P D G L

0 3.94 −10.4 5.5 3.0 12.8 0.25 0.19
0.6 3.86 −9.8 5.2 2.9 12.3 0.26 0.15
0.9 3.74 −8.8 4.8 2.8 11.5 0.28 0.08
1.2 3.59 −7.4 4.1 2.7 10.4 0.36 −0.02
1.5 3.45 −5.5 3.1 2.6 9.1 0.56 −0.18
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